

A comparison of *Ad Hoc Committee Report* (Wegman, Scott, Said) section 2.1, p.14-5
and *Paleoclimatology: Reconstructing Climates of the Quaternary* (Bradley) sections 5.1, 6.8

Regular font indicates substantially close wording between the two sources, *italic* represent paraphrased sections, **bold** represents significant departures of Wegman et al from Bradley, and **bold italic** represent points of outright contradiction between the two. Paragraphs have been reformatted for easy comparison.

Wegman – 2.1 Ice cores - para 1

The accumulated past snowfall in the polar caps and ice sheets provide a very useful record for paleoclimate reconstruction.

We shall refer to ice cores in this section even though strictly speaking there is a combination of snow and ice.

Somewhat compressed old snow is called a firn.

The transition from snow to firn to ice occurs as the weight of overlying material causes the snow crystals to compress, deform and recrystallize in more compact form. As firn is buried beneath subsequent snowfalls, density is increased as air spaces are compressed due to mechanical packing as well as plastic deformation. Interconnected air passages may then be sealed and appear as individual air bubbles. At this point the firn becomes ice.

Paleoclimatic information derived from ice cores is obtained from four principal mechanisms: 1) analysis of stable isotopes of water and atmospheric oxygen; 2) analysis of other gases in the air bubbles in the ice; 3) analysis of dissolved and particulate matter in the firn and ice; and 4) analysis of other physical properties such as thickness of the firn and ice.

Bradley – 5.1 – p. 125

The accumulation of past snowfall in the polar ice caps and ice sheets of the world provides an extraordinarily valuable record of paleoclimatic and paleoenvironmental conditions.

These conditions are studied by detailed physical and chemical analyses of ice and firn (snow that has survived the summer ablation season) in cores recovered from very high elevations on the ice surface.

Footnote 10 :

The metamorphism of snow crystals into firn, and eventually ice occurs as the weight of overlying material causes crystals to settle, deform, and recrystallize, leading to an overall increase in unit density. When firn is buried beneath subsequent snow accumulations, density increases as air spaces between the crystals are reduced by mechanical packing and plastic deformation until ... interconnected air passages between grains are sealed off into individual air bubbles (Herron and Langway, 1980). At this point, the resulting material is considered to be ice. ... thus "ice cores" sensu stricto are actually firn cores near the surface (see Table 2.2 in Paterson, 1994). This distinction is not very important except in the reconstruction of past atmospheric composition (see Section 5.4.3) ... and the term ice core will henceforth be used to refer to both ice and firn core sections.

Bradley – 5.1 – p. 126

Paleoclimatic information has been obtained from ice cores by four main approaches. These involve the analysis of (a) stable isotopes of water and of atmospheric O₂; (b) other gases from air bubbles in the ice; (c) dissolved and particulate matter in the firn and ice; and (d) the physical properties such as thickness of the firn and ice.

Wegman, 2.1 - Corals

The term "coral" refers to the biological order *Scleractinia*, which have hard calcium-based skeletons supporting softer tissues.

An important subgroup for paleoclimate studies is the reef-building corals in which the coral polyp lives symbiotically with single-celled algae. These algae produce carbohydrates by means of photosynthesis and are affected by water depth, water turbidity, and cloudiness. Much of the carbohydrates diffuse away from the algae providing food to the coral polyp, which in turn provide a protective environment for the algae.

Reef-building corals are strongly affected by temperature and, as temperature drops, the rate of calcification drops with lower temperature potentially presaging the death of the colony.

Coral growth rates vary over a year and can be sectioned and x-rayed to reveal high- and low-density bands. High density layers are produced during times of higher sea surface temperatures.

Thus not unlike tree rings, data on corals also can be calibrated to estimate (sea) surface temperatures.

Bradley - 6.8 – Coral

The term "coral" is generally applied to members of the order *Scleractinia*, which have hard calcareous skeletons supporting softer tissues (Wood, 1983; Veron, 1993).

For paleoclimatic studies, the important subgroup is the reef-building, massive corals in which the coral polyp lives symbiotically with unicellular algae ... The algae produce carbohydrates by photosynthesis and thus are affected by water depth (most growing between 0-20 m) as well as water turbidity and cloudiness. Much of the organic carbon fixed by the algae diffuses from the algal cells, providing food for the coral polyps, which in turn provide a protective environment for the algae.

Reef-building corals are limited mainly by temperature ... When temperatures fall to 8 °C, the rate of calcification (skeletal growth) is significantly reduced and lower temperatures may lead to death of the colony.

Coral growth rates vary over the course of a year; when sectioned and x-rayed, an alteration of high- and low-density bands can be seen (Fig. 6.39). High density layers are produced during times of highest SSTs (Fairbanks and Dodge, 1979; Lough and Barnes, 1990) providing a chronological framework for subsequent analyses.